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PART I
INFLUENCE OF DAMPING AND INITIAL CONDITIONS
UPON THE DYNAMIC STABILITY OF A UNIFORM
FREE-FREE BEAM UNDER A GIMBALED THRUST

OF PERIODICALLY VARYING MAGNITUDE



Section

1.0

2.0

3.0

TABLE OF CONTENTS

Title

NOTATION:esoeesssoceooseossocsosssessssocssssssnscasssnns
INTRODUCTION e e ecsesesossosososcocosscsossasonoossasoscsass
ANALYTICAL DEVELOPMENT.¢oeesoseccosoosoosscssosvessssons
2.1 Equations of Motion.escoeessescesscessscessssanesco

2.2 Reduction of Equation (2.56) to a System of Ordinary
Differential Equations by Galerkin's Method........

METHOD OF SOLUTION.scocsvovsescocsacssossssnscscsosscscnsa
3.1 Form of Equation....;..............................
3.2 Method of SolutioNeceesocsosessscccesossscoccssonns

3.2.1 Determination of the Characteristic Values..
3.3 Stability of SolutionNeesecesocscseccossscansanssoss

REFERENCES.'.....lco..oool.o...o..o...la.lot..'z.o.o.taeo

Page

ii

16
23
23
24
30
33

35



NOTATION

Longitudinal acceleration

Beam cross~sectional area

Boundary value constants depending upon initial conditions

th

The k= element in the matrix {%k} (m)

Damping factor

Square array of elements appearing in characteristic
determinant

Bending stiffness of uniform beam
Displacement function at time t = 0

Velocity function at time t = 0

Coefficient in the jth row and kth column of matrix F?k]
i = 1,2,0-0

Coefficient in the jth row and kth column of matrix ijJ

Acceleration due to gravity

Coefficient in the jth row and kth'column of matrix Eﬁk]

= Coefficient in the jth row and kth column of matrix [ﬁ;k}
i=1’2,0..

Growth factor
Function formed from A(a) to eliminate singularities
Identity matrix

Constants evaluated so as to eliminate singularities of H(a)
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Directional control factor determining thrust vector
gimbal angle

Length of uniform beam
Mass per unit length of beam

Moment distributign in beam; also, range of index m in
evaluation of A (wj)

3

Number of bending degrees of freedom assumed in numerical
analysis

Lateral force on beam arising from component of thrust due
to gimbaling

Axial force distribution in beam
Product of diagonal elements of A(a)
Rigid-body generalized coordinates

nth'bending generalized coordinate

Modulus of z j:\/zz -1

Sum of nondiagonal elements of Af(a)
Real-time variable

Amplitude of constant thrust

Amplitude of sinusoidally varying thrust

Critical end thrust for cantilever beam with direction
of thrust parallel to axis of beam

Nondimensional thrust parameter = TOQZ/EI

Longitudinal displacement of particles of beam measured
in Lagrangian coordinate system

Lateral force distribution in beam

Lagrangian coordinate defining position of particles in
unstrained beam relative to one end of the beam

x=-coordinate corresponding to the location of direction-
sensing element in the beam
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y(x,t) Lateral displacement of axis of beam from fixed reference

line
z = cos 27a
2 T 15
4 = cos 27 F
i 33
o? = M/AE |
a Characteristic exponent whose value indicates the stability

of a system whose motion is represented by linear differential
equations with periodic coefficients

B Argument of z j:\/zz -1

Y = TI/TO
8(¢g) Dirac delta function
Ala) Value of the infinite determinant of coefficients obtained

from series expansion of wk(t)

3, (a) = aa) » (-a® +F, )
3 i3
€ A small quantity
6 Gimbal angle, equal to rotation of thrust vector from a
tangent to the beam-deflection curve
4
4 , _ 2 mé
An Uniform beam frequency parameter = O T
3 Nondimensional coordinate = x/%
T Nondimensional time variable = wlt
¢n Mode shape of nth vibration mode of uniform free-free beam
¢(&) A function defining the longitudinal force distribution
in a uniform beam arising from the varying thrust
component
¥(x) Rotation of the beam element located at x
WG Rotation of the beam element located at X
Wk(r) A matrix whose elements have a periodic variation of
27 in T
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€1

el

®(n)

Beat frequency of Q & wy,
Fundamental longitudinal frequency of free-free beam

Lateral bending frequency of nth mode of free-free beam

Lateral bending frequency of nth mode of free-free beam
with end thrust

Nondimensional frequency parameter used to represent
general form of solution

Nondimensional longitudinal frequency = wL/w1

Nondimensional bending frequency wn/w1

Nondimensional bending frequency = w(n)/w1
= 90/
Frequency of thrust variation

Nondimensional frequency of thrust variation = Q/w1

_d 3
T dr r 9T
=4 2

dg 13



1.0 INTRODUCTION

The dynamic stability of an uniform free-free beam under a
gimbaled thrust of periodically varying magnitude was investigated
in a thesis by Thomas Reynolds Beal [1] « As an extension of this
preliminary problem this study will include the effects of damping
and arbitrary initial conditions upon stability and response of a

beam on the lateral bending mode of vibration.

As the most general configuration a slender uniform beam is
accelerated through space by a non-cohservative force, To + T1 cos Q4 t,
starting from rest. T° and T1 are constants with T1 being the amplitude
of the periodically varying thrust component. An attitude sensor
controls the thrust angle by means of a simple feedback system thereby
achieving rigid body stability. It is assumed that a linear relation-
ship exists between the gimbal angle (or thrust angle) and the element
rotation where the attitude sensor is located (see Fig. 1). Linearity
of the resultant differential equations of motion is to be maintained,
but the effects of longitudinal compliance upon the transverse
motion of the beam is to be incorporated. The normal assumption of

small angles and slopes is maintained to insure linearity.
Analysis is simplified by the following restrictions:

1. Slender uniform beam

2. Simple feedback system is maintaining rigid body directional
control

3. Two dimensional motion



I | ATTITUDE SENSOR

(a) UNDEPORMED STATE

=K ¥g

‘G = ROTATION OF ELEMENT AT x. TANGENT TO

DEFLECTION CURVE AT x = ¢~

R e e e s e e e e em e o rm o o - o —— ——

(b) DEFORMED STATE - WITH CONTROL SYSTEM

FIG. 1 FREE BEAM WITH END THRUST



4. Shear deformation and rotary inertia effects are neglected

5. Damping in longitudinal motion is neglected.

By including damping and taking initial conditions into account an
analytical model which more closely approximates modern space vehicle
structure and environment is achieved. One of the most serious
over-simplifications is the choice of an uniform beam, but it is felt
- that the theory and analysis presented herein may be extended to include

beams with concentrated masses and discontinuous stiffness distribution.

The equation of motion derived fdr the beam under consideration is
reduced to an infinite set of linear ordinary differential equations
by the method of Galerkin b.]. A metbod of solution for an infinite
set of Mathieu type differential equations was the primary contribution
of Thomas R. Beal[l] where damping was neglected. By a suitable
change of variable the problem with damping may be reduced to a form

that may be solved by the methods set forth by Beal.

This technical memo is prepared mainly through the effort of

Mr. Jim Kincaid, with other members of the team participating in the

work from time to time. This report represents the progress to date of
this portion of the contract work. The formulation enclosed has been
programmed for the IBM 7094 computer and verified. At the present time,
a full parameter study is being initiated and will be completed in the

near future.



2.0 ANALYTICAL DEVELOPMENT

2.1 Equations of Motion

The coordinate system of the beam under analysis, shown in Fig. 2a,
relates particle or element displacement to a Lagrangian coordinate
system. In its initial state the x coordinate locates particle position
while the y coordinate, a function of x & t, measures particle lateral
motion relative to a fixed reference line. Particle displacement

u(x,t) measures particle motion parallel to the fixed reference line.

It is assumed that the beam is uniform in cross section and mass
distribution, that simple beam theory is applicable;, and that shear

and rotary inertia effects may be considered negligible.

It was previously stated in the introduction that the beam
maintains rotational stability by a simple feedback system or in

equation form
(2.1)

where Ke is the constant of proportionality between the gimbal angle
© and the attitude sensor rotation angle wG located at station x = G.
In Fig. 2b an equilibrium diagram of forces on a beam element is shown.

Considering this element at station x = G, the angle wG is seen to be

3y
=1 Ix

SRR TN (2.2)
(1 +’§;)

wG = tan



ha—— u(x,t)

(a) DISPLACEMENTS IN LAGRANGIAN COORDINATE SYSTEM

dx

. Ay dx 9y dx

ax 2 x 2
— REF. LINE

(b) FORCES ON BEAM ELEMENTS

FIG. 2 CONTROLLED BEAM WITH THRUST OF PERIODICALLY VARYING MAGNITUDE
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and the gimbal angle may be written as
YR -
© =Ky tan 1 [3x a +'3xﬂ (2.3)

An element of the beam shown in Fig. 2b is in equilibrium at some

arbitrary position and time. Lateral forces acting on the element
2

are the inertial force ma—g dx, the applied side load pdx, and the
ot

damping term C %%.

The equations of equilibrium are readily obtained by the summation

of forces and moments as

Tind-o (2.4)
at
2
§Y+ma—z+c%1+p=o (2.5)
x at2 t
M 3y Buy _
TP -V 1+ ax) 0. (2.6)

In simple beam theory the moment at any cross section may be

written as
a2
M=pf1 X (2.7)
2
ox

and from elasticity

g
it

o AE .a_ . (2o8)



9
If the angle of rotation sf and strain %f are considered small

in comparison to unity which are assumptions used to obtain Eqs. (2.7

& 2.8) then Eq. (2.6) may be written as

M,y oy
S TPaL-v=0 | (2.6a)

Substituting Eq. (2.8) into Eq. (2.4) we obtain the familiar

wave equation

2 2

(- 4
[=4
L~ >4
[=4

il

N
=l

(2.9)

N

ax

Q

t

which is the differential equation of longitudinal vibrations.

The longitudinal displacement function u is seen to be dependent
upon the forcing function To + T1 cos Qt and the gimbal angle

by equation (2.8). If the gimbal angle is restricted to small angles

then at
T T
g, u_ _ o 1
X =2 % _ - AE " AE cos it (2.10a)
and at
x=0: M=y (2.10b)
ox

Let a solution U, be a product of X and T which are functions

of x and t respectively.

= XT (2.11)




Substitution of Eq. (2.11) into Eq. (2.9) yields

2 2 .2
1 d°X
i__2=%_d_g=consta (2012)
dx dt
2 _m 2 .
where a~ = R Let the const. term in Eq. (2.12) equal -V° to achieve

a periodic solution. Solutions of Eq. (2.12) may be written as

X = C1 cos vx + 02 sin vx (2.13)
v v
T = C3 cos ;t 4-04 sin ;t (2.14)
Therefore by Eq. (2.11)
v v

u, = (C1 cos vx + 02 sin Vx)(C3 cos 5 t +C4 sin 7 t) (2.15)
321 = (-vC, si + vC, cos vx)(C, cos =t +C, sin < ¢t) (2.16)

o vC, sinwx , €COS v 5 cos 4 sin 3 .

Boundary conditions applicable to a periodic solutions are at

aul T1
X =2 % = = aAf °°s Qt (2.17a)
and at
3u1
x=0: #=—==0 (2.17b)

c.=0 (2.18a)

(2.18b)



u, may then be written as

Tf"cos afdx
u =«5me_ cos t (2.19)

Let u2 be of the form

subject to the B.C., that at

3u2 To
x = & % _ " AE ‘ (2.21a)
3u2
x=0: 3==0 (2.21b)
It is easily shown that
T° x2 To t2
4. = = - (2.22)
2 2AER 2AE2a2
plus some constants that do not affect gs.
The particular solution of Eq. (2.9) is written
=y, +
up u tu,
2 2
T x T ¢t T
R S T (2.23)
P 2AEa“f n e

To obtain a general solution a term u must be added to the
particular solution up such that the sum will satisfy arbitrary

initial conditions.



Choose u, of the form

subject to the boundary conditions

u (x,0) = £(x) - u (x,O)

auo du
— (x,0) = g(x) - 3;2 (x,0)

auo
> (0,t) =0
auo

Substitution of Eq. (2.24) into the wave equation yields

x" _ 2 T" = _ 2
X =a T k® a const.
and
u = (C, cos kx + C, sin kx)(C, cos k t +C, sin k t)
o 1 2 3 a 4 a
auo K K
el (-Clk sin kx + G,k cos kx)(C3 cos ¢ +¢C, sin . t)

From Eq. (2.25c, 2.25d) and Eq. (2.28)

nla

10

(2.24)

(20253)

(2.25b)

(2.25¢)

(2.25d)

(2.26)

(2.27)

(2.28)

(2.29a)

(2.29b)



and

u =4+ Y [A cos M—t + B sin ;:l:—t] cos n:_x (2.30)

%y v ar| n¥t nat nmx

F=n£1H[ - A sin g + B cos _a'i] cos —— (2.31)
Eq. (2.25a) and Eq. (2.30) yields

f(x) - u, (x,0) = A+ Z A cos ILF- (2.32)

n=1

Multiplying by cos D% and integrating over the length yields

L
An = %J [f(x) - up(x,O)] cos B% dx (2.33)
o

In a similar manner Eq. (2.25b) and Eq. (2.31) yields

L
B_= ﬁ—:f [g(x) - —2 (x 0)] cos “—:l dx (2.34)

o

The general solution hecomes

T x2 T t2 T Q
u=u tu =-— . =2 _l—cosaxcosm
P o 28B4 ,,p.2, AE sin a0l
+ nm nn nwx
+ A nEI [An cos oyt +B sin 7 t] cos - (2.35)

where A & B are defined in Egs. (2.33 & 2.34). The normal force

P in Eq. (2.8) due to the longitudinal vibration may now be expressed as

T x o
0 sin alix nn nn
=9 Sin QX an _nm nw
P = -+ T,00 270 cos At + AE n£ [An cos —gg t + B_ sin O3 t]
ein DIX ' o (2.36)

11



The shear term V is eliminated between Eqs. (2.5 & 2.6) resulting

in the equation of motion for beam vibration

i
o

Yy, 3 [, 3y %y Loy
ET — + ™ P o +m +C +p (2.37)
X

9
a2 Ot
where P is defined in Eq. 2.36.

This is an opportune point to simplify and dimensionalize our

derived equations. We now make the following substitution recalling

that g was previously defined as u2 = ﬁ%.
Let
prnd T—l
Y=7 (2.38)
o
£=71 (2.39)
T tw) (2.40)

where wlis the fundamental transverse frequency of a free-free beam,

n
La

BI?‘;

(2.41)

ESE]

vy

w, is the fundamental frequency of longitudinal vibration of a free-

free beam.

- Q

o == (2.42)
L

- Q

U G (2.43)

12




Eqs.

P(g)

¢(g)

sin (ngf)

sin (wo)

(2.33, 2.34, 2.36 & 2.37) may be rewritten as

(o}

3
I
&

Il
]
o
ey, t_F

L L
C o —_ - = A —T + B
cos (n T w ) cos n n

w

1

1

0

+ yo(£) cos

W

n—
W
1

3y
R

T +B sinn—t
n w

+

A

4
1

(o]

w

1

a2
——% + nA

9T

W

1

13

AEn

ot +
Qt T

—

I

n=1

1
A = 2@[ [f (g) - Uy (£,0) ] cos (nmg) dE

du
[8 (g) - ;E (E,O)] cos (nmg)dE

n

L ] sin (nwﬁ)}

A
EI P
wy,
sinn —°7T
wy

(2.44)
(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)



as shawn in the figure below:

Fig. 2.1

The dimensionalized thrust vector To + T1 cos QT applied at § =1

has a normal component (To + T, cos Qt) sin 6 acting on the beam

1
at £ = 1. See the figure below

T + T. cos ar
o 1

— - _— Beam Axis

Fign 2.2

For small gimbal angles sin 6 = 8 and the normal side load p acting

at £ may be written as

- 0
p = (To + T, cos at) 2 § (¢ - 1) (2.54)

14



but for small rotations, and considering %% <<1

ay(E,1),
T

NIN
@

as shown previously in Eq. 2.2.
Therefore
_Tg Iy, )

= + 9
p 5 (1 Ty cos Q1) Ky

) 3% 5(g-1) (2.55)

Substitution of Eq. (2.48 & 2.51) into Eq. (2.52), making use of

the relationship of Eq. (2.49), then simplifying yields

4 o
3y ,7 & )3y S.) + AET
IR 3E {85 (g + yo(£) cos Q7)) + T & g
BE o n=1

w 2
nC cos (n ml% - ¢ )| sin (nug)p + Aa 3y 4
n 1 n 1 312

ay(E,1)
nll 5% ! To (1 +y cos Q1)K

. —-a—g———a(g-l) = 0 (2.56)

We note from physical considerations that the following boundary

conditions on y are to be satisfied.

32 33
at £ = 0: ——321=o; ——§=0 (2.57)
13 13

32 33
at £ = 1: ——‘21=o; —-;l 0 (2.58)

3 13

15



Notice that no restriction has been placed on the translation term

y(£,7). Therefore arbitrarily large values of y(£,T) are permitted.

Eq. (2.56) is the governing linear partial differential equation
representing lateral vibratory motion of a beam subjected to conditions

defined in this study. We now proceed to a method of solution.

2.2 Reduction of Equation (2.56) to a System of Ordinary Differential
Equations by Galerkin's Method

A description of the Galerkin Method indicates that the solution

of Eq. (2.56) can be adequately approximated by expressing the deflection
V(Es1) = q, + qz + n£1 q (1) ¢ (&) (2.59)

as a sum of some translation term qA(r), rotation term qB(TL and a
function ¢n(£) as the nth vibration mode shape of a free-free beam
that satisfies the boundary conditions of Eqs. (2.57 & 2.58). qn(T)

is the generalized coordinate associated with ¢n(£) of the form

¢ = cosh R € + cos RE -a (sinh R & + sin RnE). (2.59a)

Properties of this function ¢n(6) are set forth in several texts
but for our purposes Ref. [9] is quite adequate. We observe that ¢n(5)

satisfies the differential equation

=% (2.60)

16



9

4 2
where An = E%T was previously defined on page 13. Also ¢n(€) is

seen to satisfy the following boundary conditions at

a6 a3

£ =0: 2 =0 ; =0 (2.61)
g e
a2 a3

£E=1: 3 =0 g =0 (2.62)
13 e

as do all the functions of Eq. (2.59),

Galerkin's method requires that the error inherent to the approxi-

dy
mate solution Eq. (2.59) be crthogeral to the weighing function EHE .
i
In equation form
1
(yy 2
,‘yN) Sa; dg = 0 i=q,.95:9, (2.63)
0
or
f1
§(yN)dE =0 : (2.63a)
‘o
rl
§(yy)Edg = 0 (2.63b)
‘o
[1
§(yy e (£)dg n=1,2,3,, . . (2.63¢c)
Jo

where §(yN) is the error resulting when Eq. (2.59) is substituted
into Eq. (2.56). The theory behind this process is explained in

Ref., EB].

p—t
~J



Without going into detail Eqs. (2.63a, 2.63b, & 2.64c) may be

integrated to obtain

4" 45 14" n o
Mgyt My g torgp ot

-_— - N t
T, (1 + YcosQt) [qB + nilqn% (6)1] +

N
T, (1 + ycosQt) Ky [qB + n£1

q, ¢r'\ (E)G] =0 (2.64a)

N o>
LallP S

-— - N 1
+T_ (1 + Ycoshit) [qB + n_Z__l qa, ¢n(s)1]

l - cos 10

Nlor-ll

q, = T ¥ cos Q1 —
B ° 76 sin 70

N
- T, (1L+Y cos Qr) Zl q ¢ (&),

N 1
+ T Y cos ; q, | ¢,0' 4
n=1
o)

— - N 1
+ To(l + Y cosfit )Ke [qB + Z q, ¢n(€ )G]
=1

18



+T EC—S (-1)% (mL+ )
o 9B s - -1 cos (s 1 ws

s=1 1
N © 1
+t T, ) q, ) =#s Cg ¢n(E) cos (smE)AE o
n=1 s=1
0
“L
cos (s q T+ ws) = 0 (2.64b)
4 o 4 ° 4
MG T 9 T A 9

N .
+ _T.o (1 +y cos Qt) [qB + ] q ¢;(E)1] ¢k(£)1
n=1

1
qQy - _'fo y cos Qt [¢k(£)1 - ¢k OldE]qB

(o]

[]
=l

o

©
P

—

o

~
—

N 1 _ N r
-To z a, €¢n ¢k dE-Toycos Qr g q, ¢¢n¢k dg
n=1 °
]
N

— - !
+T, (1+Y cos @) K [qB + n£1 ay ¢n(5G>] ¢, (),

1

- - wy '

- T, qp szl C, cos (s 7"—1 T+ ws) ¢, sin (smE)de
0

N 3 w 1
-T z q Z Cs cos (s m—L + 'l’s) J ¢; ¢1: sin (swg)dE = 0 (2.64c)
= s=1 1 o

k = 1,2’ L AN ) N

where 'bs is defined in Eq. (2.53).

‘19



Note that Eq. (2.56) has now been reduced to a set of ordinary

linear differential equations as given above. The coordinate q,

can be eliminated between Eqs. (2.64a & 2.64b) without losing any

important modes since translation is uncontrolled.

The set of Equations (2.64) may be represented in matrix form

as

b bl s ]

+ 1_—2.1 [Hikj cos (i ;LT + wi) {qk} =0
where
'qli
9
{q} = $: ¢
N
W

and [ij] s [ij] , & [}{;k] are matrices of order N + 1. The

elements of these matrices are defined as follows.

1

T
= w2 _o ' o
ij “] ij + v [¢j (1) ¢, (1) - | &6 ¢ d&
1 o)
' .
T Kgty (€)) oy (a)G] 3 =1,2,. « . N
k=1,2,. . . N
§jk =1 j=k
ij =0 j#k

20

(2.65)

(2.66)



3

Fj,N'H. = F Kg ¢j(€)]_ i=12,. « « N (2.67)
F = 121 L' 0 (g). +1 !
Nk~ 7,4 ] 2 o (8)) - ¢ (&), +5 Kg ¢ (&), (2.68)
k=1,2,. . . N
6fol<e
Py, T TG (2.69)
1

I TR R , |

G = K ¢y (B) & &) - b4, ¢ A&+ K4 ¢, (1) ¢, (€)](2.70)
0

=1

1
Oy N+t =—Z[ 7 o' de + K, ¢j(1)] (2.71)
’ A
1

° §=1,2,0 » « N

T 1
=122 |1,
Cyt,k T 12 [2 b (B - ¢ () ¥ J b ¢ 48
o]

1 ' —
+-§ Kg & (E)G] k=1,2,. « « N (2.72)
G =121l_l_;w_s_ﬁ+lK | (2.73)
N+1,N+1 A4 2 75 sin 70 e *
1
i _ _AE i _
ij - '_f 2 Ejk Ci j 1,2,. . L] N+1 (2'74)

k=1,2,. . « Nt
i= 1’2,. * ©

21



T
i _ "o e =
1 J, k=1,2,. . . N
—T‘ 1 i = 1,2,- ' .
i _ 0 / =
o i = 1,2’0 L] [
i E :
= L
EN+1,k =12 N s ¢, (&) cos (img)dg (2.77)
1
o}

k=1,2,. « » N

i=1,2,o o o

i =19 0 RELEN 1 ‘
ENﬂ,N+1 =12 v [( 1) 1] oi=1,2,. .. (2.78)
1

Eq. (2.65) represents a system of ordinary linear differential

equations of the damped Mathieu type whose solutions are required.

22



3.0 METHOD OF SOLUTION

3.1 Form of Equation

The system of equations (2.65) can not be classified as Mathieu's
or Hill's equation precisely but their method of solution may be

employed. For reference we rewrite Eq. (2.56).

{‘ik} . {“} “ e {qk} e o] {qk}
w i Jeos o+ up < {qk} L,

It becomes convenient to remove the phase angle wi in the last
term of the preceding expression. This is done by recalling that
w = w BT .
C, cos (n LT Wi) A, cosnw +B, cosnurt

The damping term N can best be handled by the change of variable

=e 2 u (3.1)

as suggested in Ref. [1%] . Proceeding we now write

IR I L R

[-+) oo
i - , ™ v i pd - _
+~1£1 [ ij-lAi cos 1 wLT {;k} + iil[ ij] Bi cos n mLT {;k} =0
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— —

3.2 Method of Solution

In accordance with [5] we may take a solution of the form

{;k} = eio‘QT wk(r% (3.3)

where {%k} = ) {ck}(m) eimQT (3.4)

m=-oo

with a period of 2 ﬂ/a.

Eq. (3.3) becomes

{uk} = 1 {}k} (m) ei(a tm) (3.5)

We have introduced a new constant a which may be real, imaginary
or complex, its type determining the stability of the system. See

Section 3.3.

Let us now express the forcing frequency and the longitudinal

natural frequency as a ratio

Eqbl
I
0 ho

=

(3.6)

where p & q are integers but restricted to non-interger values of

p/q. Therefore GL & Q may be written as

5 = pw (3063)

W = aqu (3.6b)

where w is the beat frequency.
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Substitution of Eqs. (3.5 & 3.6) into Eqs. (3.2) yields

-]

) w2 z {Ck} (m) (a +m)2 ei(a + m)wTt

I—=00

-]

2 (oL
(AR PR A Ry

+

5 (m) i(a +m + plut
[ij} Z {Ck} e

m—==c0

+
N j=

+
N =
o

M—weo

|5 ) e
jk k

1 [- -] (- R + +
+‘§ E [H§k] Al E {;k} (m) el(a m + sqlwt
s=1 m==c0
1 @® . - ‘ o . 4 ) )
S A D
s=i L Mm=-eo
1ov s ] v (m) i(a +m+ sqlut
R ifljk B, 1 {Ck} e
s=1 i M=-o
i ? r s v (m) i(q+m - sqQlur = 0
r3 L I.ij] B, 1 {ck} e
s=1 M=~ o

(3.7)

Equation (3.7) is satisfied for all T if collected coefficients of

like exponentials are equal to zero, or in equation form
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1 s (mtsq) _
+ 5 I |u (A  + 1iB) {ck} =0 (3.8)

m=.-.-3,-2,-1,0,1,2,3...

_1,2,3’- . . N+1

e
|

k=1,2,3’o o o N+1

The system of equations represented by Eq. (3.8) can be expanded
into a single matrix equation as shown on the following page. To
ensure that the determinant of the matrix of coefficients is absolutely
convergent Eq. (3.8) is first divided by the factor

2

(F -%)-(a+m)2.

el

kk

The importance of absolute convergence becomes evident as the develop-

ment of the method of solution proceeds.

Eq. (3.9) below is the matrix equivalent of the system of

equations given by Eq. (3.8). As shown the index m ranges from -1
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through +1.

There is no upper limit except computer capacity but

we can choose a finite value of m, say M which will give adequate

convergence.
1 1
¢ o o D —_— D =D
-1,-1 m2 -1,0 w2 -1,1
o o o 1 1
== D D =D
L2 0,-1 70,0 L2 0,1
s s 0 1 1
wz 1"1 mz 1,0 1,1
k =1,2,3,.

and D

N+1

0

(3.9)

We here define A(a) as the determinant of the matrix 6f coefficients

3ok

as square arrays of elements within A(a). The arrays Dj K
H

are defined by the following equation.
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D ;smtsq =

F12 Fi vt
Fu-(a + m)2 Fu-(a+ m)z
Fa PR
2 oo 2
F22-(a+ m) Fzz-(a+ m)
PNt L1 Fyh,2
2 — [ ] L]
F33-(a+ m) 33-(a+ m)
GH(Y/Z) 612(7/2) ‘ . 1 N+1(7/2)
2 2 2
Fll-(c"“ m) Fu-(a+ m) Fll-(a+ m)
G21(Y/2) G22(Y/2) 2 N+1(1!/2)
2 — 2 . * —
F22-(a+ m) F22-(a+ m) 22-(a+ m)
Gty 1(1(/2) G4y ,2CY/2) Oy 1 (Y72
— — 2 * L] 2
33-(0"' m) F33-(a+ m) F33-(a+ m)
S .
Hu(As+ 1133) H (AS+ 1135) 1 N+1(A + 113 )
2 2 2
Fu-(a+ m) Fll'(°+ m) 11-(u+ m)
S s -
Hy (At 1B) H22(A5+ iBg H? N+1(A +1iB)
Fo-(atm?  F-(atm)’ F,,-(at m)?
S .
HN+1 1(A + 113 ) HN+L 2(A + iB_ ) HN+11N+1(AS+ 1135)
- 2 -(a+ m)2
33-(d+ m) 33 (a+ m) Fiy (a+ m)

S=1,2’3,0 .

28
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s S S
B, (A - - -
| Wi (A-1B)  H,(A - 1B ) HY g (Ag- 1B l
-— 2 e o » — 2
| Fpy-(at m) F,-(at m) Fp (ot m) |
| |
] S 8
) _ | S - i) Hy (A - 1B ) Hyiy,o(Ag~ 1B,) I
m,m-s = 2 2 e
] Fy,-(atm) F,=(at m) F,=(at m)? |
| : : : |
] -3 .
| HN+1 (A= 1B)) Hy, (A - iB) HN+ILN+1(A -i8) |
— -— 2 LN
| Fyp-(at m)? Fy-(at m) F o -(at m)? |
\
s = 1,2,3,- ¢ o
where
Fo-L . .0 (3.11)
T2 ‘

j corresponding to the row within each array.

The system of equations represented by the matrix Eq. (3.9)
can have a non trivial solution only if the determinant of tho matwiv

of coefficients equals zero, that is

AMa) = 0 CHLLZ)

where only the values of a which satisfy Eq. (3.12) are pemmitted.

Our problem then is to solve Eq. (3.12) for a.

To ensure the validity of our solution the infinite determinant
represented by A(a) must converge absolutely. It has been proven in
Ref. [2} that an infinite determinant converges if the product of
the diagonal elements and the sum of the non-diagonal elements are

absolutely convergent.
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The product of the diagonal elements is identically equal to 1
as seen from Eq. (3.10) since all elements along the diagonal are equal
to 1. This condition was deliberately obtained by dividing Eq. (3.8)

by the appropriate factor.
The sum of the non-diagonal elements of A(a) is

+ oo -+ ] -
N+l N+1 F Y/2 ij + ij (AS 1BS)

-1 “ ik
S=73 - 2
w” 3=l k=1 m=-e F,, - (atm)
ik 1
Nl =  y/2 G, +H® (A - iB) .
+ L7 L i (3.12)
w =1 m=-e F,. - (& +m)

o«

1
which is convergent by comparison with the series Z 3 We
N~=e I

may therefore conclude thatAa is convergent for all @ except where

the factor F,, - (at n)2 is equal to zero.

33

3.2.1 Determination of the Characteristic Values

We have previously defined the characteristic determinant A(a) in
terms of arrays Dj K® Each array is defined in terms of its corresponding
9
elements in Eq. (3.10). Referring now to the elements of Eq. (3.10)

and keeping in mind their position as elements in 8(%) we may deduce

the following pertinent points.
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l. Writing - a for @ and - m for m does not alter (a+-m)2.
Transposition of the elements containing + m and - m leaves
A(a) unaltered since m assumes all integral values from -w to =.

Therefore 4(a) = & (-a) so that A(a) is an even function of a.

2. [(a—i— 1) +n‘}2 =[a + (m + liz, therefore replacing m + 1 by
m gives (at m)2. Hence a(a) = Aot 1) proving that Aa has

period 1.

3. Singularities exist only when a satisfies (a+-m)2 -F,, =0.

33
That is when a = + (Fﬁj)% - m. We exclude the possibility

that (FBJ)% = m therefore there is no singularity at o= O.

We now define a function pj(a) = 1 = that has
cos2am - cosT Fjj

the singularities and period of A(a).

From 3 it follows that

N+1

H(a) =4() - ] K

A oj(g)

will have no singularities if the constants K, are suitably chosen.

3

We may now employ Liouville's theorem to conclude that H(a) must be a

constant. By letting a+iw, H(®) may be evaluated as

: N+
H(a) = lim a(a) - ] K

p.(a) =1
a>ie _‘]=1 j j

since all the elements off the diagonal of 4(a) tend to zero as a

approaches iw.
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The constants Kl’ K2, K3, oo Kn+1 are evaluated by allowing

R SN = .
a to approach (Fll) s (F22) s see (Fn+1, N+1)% respectively. Letting

~ (% %
G—(Fjj) +€9

. , = \% = %
Kj 21 sin 2n(Fjj) iig el (Fjj +e) (3.13)

To evaluate Eq.(3.13)it becomes necessary to define a new determinant

a.(a) = (-a® +F, )a(a) (3.14)
3 33
= )
This new determinant does not have a singularity ata = (Fjj) .
Substitution of Eq. (3.14) into Eq. (3.13) and taking the limit yields
7 sin Zﬂ(FBj)% 1L
K, = a,(F,.2) (3.15)
A F NI
33
We may now write the characteristic equation as
N+l K,
1l - z E_—j_z- = 0 (3.16)
=1 7]
where
(F, ) (3.172)
= cos 2n(F,, 3.17a
% 33
z = cos 2ma (3.17b)
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3.3 Stability of Solution

The characteristic values & of the solutions

_ eiuwr ¥

Uk - k k=1,2,ooc N+1

are evaluated from Eq. (3.17b) as

a=- 1n(z /2 -1 ) (3.18)

Solutions to our original differential equation may now be obtained

from the relationship

) -

of Eq. (3.1). q, may now be written in terms of the characteristic

{ék} = eﬂ%nt . etaut {Wk} (3.19a)
{ } = ot (iaw - 3n) {w } (3.19b)
Q. e K o

We now establish the stability criteria governing the set of

values of u -

solutions of Eq. (3.19b)

1. A solution is defined as unstable if 9 tends to t o as 7

approaches T+ &,

2. A solution is defined to be stable if 9 tends to zeron or

remains bounded as T approaches + =,
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3. A solution with period 27 is neutral but q, may be regarded

as a special case of a stable solution.

The elements in the column matrix Vk have a period %1 which
t(iow -
is neutral, therefore stability depends upon e 4 ) or more
specifically upon the relative values of n & a. The term (iaw - %n)

may in general have any real, imaginary or complex value depending

upon a& & Mo

o is determined as a function of the computed z value from
Eq. (3.18). z may be real or complex so for convenience Eq. (3.18)

is written as

_ i 18

a=-2=1n (Re™") (3.18a)
i 8

= e e— + — .
o 2ﬂlln R om (3.18b)
where R is the modulus of z j:\/zz - 1 and B the argument. Then
w_ .1 ip
{qk} = eT(Zn In R 2) . e(Zn) {wk} . (3.19¢)

From the criteria established a stable solution requires that

n22lnR (3.20)

or for zero damping that
w_ < .21
o In R 20 (3.21)
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LIST OF SYMBOLS

Half length of cylindrical shell

Radius of cylindrical shell

Thickness of cylindrical shell

Mass per unit volume of shell material
Young's modulus of shell material

Poisson's ratio of shell material
Acceleration of gravity

Total mass of the shell

Mass moment of inertia of shell about a line
through the center of mass perpendicular to
elements of the cylinder

Any convenient reference frequency

Axial shell coordinate

Tangential shell coordinate

Time |

Cooxrdinates of the center of mass

Rotation of a line element through the center
of mass

Dimensionless axial shell coordinate
Dimensionless time

Dimensionless time

Diﬁensionless coordinate of center of mass
Dimensionless coordinate of center of mass
Dimensionless thickness parameter

Dimensionless radius parameter
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w = w/L
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Dimensionless parameter

Magnitude of steady state thrust per unit
of length applied around the bottom of shell

Ratio of the magnitude of the sinusoidal time
varying thrust per unit length to T°

Circular frequency of the sinusoidal component
of the applied thrust

Directional control factor determining the
ditection of the thrust

Dimensionless parameter of the Mathieu equation
that governs a(t)

Dimensionless parameter of the Mathieu equation
that governs a(t)

Stability parameter of the solution for a(t)

Stress resultants in shell
Moment resultants in shell
Shear resultants in shell

Axial, circumferential and normal components
of surface force applied to shell

Axial, circumferential and normal components
of acceleration of shell element

Axial, circumferential and normal components
of shell relative to moving reference frame

Dimensionless components of displacement of
shell element

Generalized coordinates of u, v, w

Initial values of Umn(T)’ an(T), and w&n(f)

Initial value of a(t)
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I. INTRODUCTION

The dynamic response of a large rocket booster during its powered
flight is investigated by studying a simplified model of the booster.
In this analysis, a circular cylindrical shell subjected to a gimbaled
time-varying end thrust is accepted as a model of the booster in flight.
The direction of the gimbaled end thrust is controlled by a simple
proportional feedback system as indicated in Figure 1. The time
variation of the end thrust is assumed to be sinusoidal about some
average thrust. This model will demonstrate, at least qualitatively,

the structural performance of a large booster.

The formulation contained in this technical memo was mainly the

effort of Dr. James Hill with other team members participating in

the work from time to time. This report represents the progress to
date of this portion of the contract work. The formulation enclosed is
presently being programmed for the IBM 7094 computer. Upon completion

of programming and checkout a full parameter study will be initiated.



IT. _EQUATIONS OF MOTION

The motion of the shell will be described in a moving coordinate
system as indicated in Figure 1. The coordinate system is free to move

in a plane with the origin always at the center of mass of the shell.

T(t) = To(l' Ycosfit)

Figure 1



Neglecting the rotary inertia of the shell, the equations of motion of

the shell element are (1)*

BNx 1 BNex
ox + T a0 + Px = Ohax (a)
oN oN

x0 1 0 1

= - - = )

> | r 98 Q + Pg = ohay (b)
aQ 3Q

X 1 2 1 _
ox + r 36 +.1: Ne + Pz - phaz (e)

(1)

M oM

X 1 0x _
ax Tr 38 - =0 (d)
aMxe"laMe+ . -
X r 36 Qb
N, -N,=21wm (£)

Ox x6 r 6x

where P 1is the mass density, h the thickness of the shell, a s 3, a,
are the components of the acceleration of the element in the axial,
circumferential and radial directions, respectively. The radial coordinate

z is positive inward. Nx’ Ne, Nxe, Nex’ Qx’ Qe, Mx, Me, Mxe’ and Mex are the

standard stress resultants. Px’ Pe and Pz are the components of the

* Numbers in parentheses except where accompanied by the abbreviation
eq. refer to references in the Bibliography.



distributed surface force in the axial, circumferential and radial

directions, respectively.

Since the moving coordinate system is located at the center of
mass of the shell we can determine X, Y, and o by Newton's Laws of

plane motion

MX = 2nr T(t) cos(K + 1)a - Mg (a)
MY = 27r T(t) sin(K + 1)a (b) (2)
Ia = -2nr L T(t) sinKa : (¢)

Assuming that the deformation does not change the half length nor

the mass moment of inertia.

Now we need expressions for (ax, ags az) in terms of (u, v, w) the
shell displacements and (X, Y, a) coordinates of the reference frame.
Kinematics of a point in a moving reference frame yields

2

a =294 % cosa + Y sina - r cosfa - x&2 + 2a (EK sind + v cos@)

X 2 ot ot
ot
azv .2 3 .. oo ° au

a =2— + (r cosba“ - Xa - Y cosa + X sina) sin® - 2a =— sind

0 2 t

at (3)
32w 2 . o b o Ju

az = — + (r cosBa” - Xa - Y cosa + X sing) cosd - 2 Y cosé
ot

(a)

(b)

(e)



The underlined terms are Coriolis termms and will be neglected in

the subsequent analysis.

Equations (2) can be solved for X, Y, and a. These are substituted
into eqs. (3) to determine expressions for as a, and a, on the right

side of eqs. (1).



ITI. EQUATIONS OF MOTION IN TERMS OF SHELL DISPLACEMENT

In eq. (lb) the term % Qe will be neglected. It is also assumed

that Nex = Nxe but not that Mex vanishes. Eliminating Qx and Qe from

eq. (lc) by eqs. (1d) and (le) we arrive at

x 41 ex+P=h—a-?-"1+f(et) (a)
ax r 26 x PR T2 T RNl a
ot
N aN 2 (4)
x6 ., 1 76 _ 3V
x T 35 Fe~ eh 7t E,(x0,0) (b)
ot »
oM 132Mex 132Mxe 132Me 1 3%
—X 2 - = + S ——+ =N +P_ =ph %+ £ (x,0,t) (c)
2 s8>
axz r 9X98 r 9x38 r ae2 r 6 z at2 3
where
fl(x,e,t) = ph (X cosa + Y sina - r cosCa - x&z) (a)
f2(x,e,t) = ph (X sina - Y cosa + r cosB&2 - xa) sind (5) (b)
f3(x,6,t) = ph (i sina - Y cosa + r cosﬁa2 - xa) cos® (c)

The following approximate relations between the stress resultants
and the displacements will be used to write eqs. (4) in terms of the
displacements u, v, w. The approximations entailed in these expressions

are to neglect higher order terms in "h" and terms containing

Lav,  lav
T 30 r 3%’



Eh —3u v v
N = —-+—(-§5'-w—)|
X 1_\,2 Lx r |
_Bh [lav 1 au
Ne“1 2 |Tee " +"a;|
-V |
- - 13u _ 3v
Neo = Nox h[ra +a;]
—
2 2 (6)
x | ax®  r° o0
.2 2
Mg =D | SRy Y
r- 90 ox
Y B
X0 ox r 20
Substitution of eqs. (6) into eqs (4) yields
2 2 2 2 2
2w, (1-y) 27w | (Ih) 37wy wdw_(I=v®) U p oy ()
- = 2 s Us a
ax2 21_2 ae2 2r 3x36 r 9x E 3t 1
2 2 2 2 2
(1+v) 3%u (l-v) 3°v | 1 3% 1 3w _ (1-v°) v
+ o ——— . e —— = P +F(x,e,t) (b)
2r ax 36 2 3x2 r2 ae2 r2 20 E atZ 2
2 2 2
v du 1 av 1 h o4 (1-v°) w
=t — . =y - = V= P + F_ (x,6,t) (c)
r 3x r2 96 r2 12 E 3:2 3
; 2 92 1 @t
where v is Poisson's ratio, V" = — + — ——= , and
2 2 2
ox r~ 36

(7)



Fl(x,e,t) = 5 (f1 - Px), (a)
l-v2 '

Fz(x,e,t) = - (f2 - Pe), (8) (b)

F,( )—1""2(f P )

3 X08,t) = T T Ay E, (e)

Eqs. (7) are rendered dimensionless by the transformations

£ =x/L, T = wt, : A =L/r,
u = u/L, v = v/L, w=w/L,
(9)
G, = LF, G, = LF,, Gy = LF,,
22
L
0 = h/L, u o= p Ew s
Eqs. (7) became
2- 2- 2- - 2-
9°u (1-v) .2 3°u (1+v) ] w 2 a u
+ A + A = vizy = (1=vH)y == + G, (£,8,1) (10)
22 2 ) 2 €30 Y ' 2 1
2- 2- 2- - 2-
(1+v) 37u | (1-v) 3°v 2 3v 2 3w 2, 3V
A + TAT == = A" = 1-vH)u —5 + 6, (g,0,7) (11D
2 Tape 2 2 ) 20 2 2
3G . 23V 2= 02 =4- 2, 2%
VA 3 AT gg - ATw - ZVv= (1-v" )y — + G3(g,e,r) (12)
o1
where
vVET AN — (13)
9§ a6




Before proceeding with the treatment of eqs. (10, 11, 12) we will
determine a(t) from eq. (2¢) then eqs. (2a, 2b, 5, and 8) will yield

the non homogeneous terms Gl’ Gz, and G3.



IV. SOLUTION OF EQUATION (2¢) TO DETERMINE a (t)

Knowing o (t), which is the solution of equation (2c), equations (2a)
and (2b) render X and Y. These functions of time are all that are
required to specify fl, £,, and f3 by eqs. (5). Rewriting eq. (2c) we
have

2 2nrLT

da 2 (1 - ycost) sin Ka = 0 (14)
dt2 I

we will restrict o such that sin Ka = Ka thus

2 2nrLT

d ; +—3 2 K(1 - y cosQt)a =0
dt

I
[N]}e
(a4

changing to a dimensionless time such that 7
and introducing the parameters

8nrLT K
0

a = /" q
102

N =<
[ g

s (15)

the equation becomes

dza

2
dtl

+ (a - 29 cos 2yJ)a =0 (16)

Eq. (16) is a Mathieu equation and the theory for its solution
can be found in several standard references (2), (3). For cylindrical
shells that'represent large boosters and the magnitude of the thrust

they encounter we can restrict the range of a and q to

0<a<l 0<q<0.05 (17)

10



The nature of the solution of equation (16) greatly depends upon

the parameters a and q. For certain values of a and q the solution is
periodic with period 27, for others it is periodic with period 7 and
for other parameters the solution becomes unbounded for large values
of T (unstable) while for even other values the solution remains
bounded (stable). A chart of the regions of stability in the (a,q)

plane is given in MclLachlan's, Theory and Application of Mathieu Functions

on page 40. For the range of a and q given by equation (17) the solution

is stable and may be taken as

alr,) = 1P ) Cop ©

F-Q

a7 i (18)

The two independent solutions of eq. (16) are the real and imaginary
parts of the solution of eq. (18). Substitution of eq. (18) into

eq. (16) yields

2 i(2r + B)t i(2r + Bt
I {-(xr+8) c, e 1+ac, e 1 -
r—-w
i(2r +2 + B)1 - 1i(2r - 2 + B)T
- q Czre . 1 Czre 1 0
Thus
) ~ .

l:a - (2r + g) :lch “a(Cy 5 FCy ) =0 (19)

-ﬂ,..-r-..w

11



It can be shown (54.77 McLachlan) that

C
+
—%5-2- =~ q/4(r+1)2 for r large

2r

~—» 0 as r + =

thus the convergence of the series in eq. (18) is assured.

Equation (19) represents a doubly infinite set of homogeneous linear
equations. Consistency requires that the determinant of these equations

vanish. This requirement determines the value of B thus 8 is such that

[ * L] 5-2 1 5-2 L] [ 2 L4
L] [ ] [ ] 6-1 1 5-1 . L] .
A(B)= « o 0 Eo 1 Eouno =0
e o o 51 1 610 ¢ 0
e By 1 I (20)
where
q
€

r (2r+8)2 -a

The theory of the infinite determinant in eq. (20) appears in the
same references already mentioned. It will suffice here to list some of

its properties. The function A(B) has the following properties:'

1. A(-g) = A(B), 1t 18 an even function of 8.

2. A(g+2) = A(B), it 1s periodic with period 2.

12



%

3. A(R) has simple poles at B = a% - 2r and B = -(a“ + 2r).

4, Since the function

1

x(B) = 3

cos T8 - cos Ta

has simple poles at the same points as A(B8) and has the same

periodicity it follows that the function

p(B) = A(B) - C x(B)

will have no singularities if C 1is suitable chosen. Observe
that the above is an entire function and bounded at infinity,

thus by Liouville's Theorem it is a constant.

The value of ¥(0) =1 and C = [A(O)'l ] [1 - C°S“a%].

The equation containing x(8) now results in

sin2 ¥gr = a(0) sin2 %wa% (21)

For small q, such that q2<<1 by Tisserand, F. [6], we have

2 %
A(0) =1 +Mo_t%L (22)

4a® (1-a)

Various numerical examples have indicated that three terms of the
series in eq. (18) provide an adequate solution for the range of arand
q given in eq. (17). Thus C4 and all higher order coefficients and
C_4 and all lower order coefficients are taken to be zero. Eq. (19)

yields for r=1

0

a-(2+8)

, ) (23)

13



and for r = -1
0

cC .= ¢/ ,+¢.) (24)
-2 |a-(8~2)2 l 40

For r = 0, eq. (19) provides a check, we should have

2 1 1

E-(2+3)ZJ ' ‘a-(B-‘Z)zl @

how well eq. (25) is satisfied is a measure of the adequacy of

(a-82) = q

the solution.

Since the solutions of eq. (16) are arbitrary to a constant

multiplier we can set C° =1, thus

c,= , c, = (26)
2 ag-22] 2" -z+9)?]

The general solution of eq. (16) is

a{t) = a) [C., cos (2-8)7y + cos b1 +C, cos (2+e>11|

(27)
+'a2 EC_2 sin (2-8)11 + sin BT, + 02 sin (2+B)T;]
If the initial conditions are
— da =
a(0) = % dt | t=0 Yo
we have
a =a; (1+C2+C_2) (28)

1
s =G, [B+ @8 ¢,y - 29 c_é]

14



Eq. (27) is the general solutionm, a) and a, are determined by eq. (28),

and G, and C_, are given by eq. (26) and B is found from eqs. (21)and (22).
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V. EXPRESSIONS FOR THE FUNCTIONS Gl(e,e,r), Gz(g,e,-r) and Ga(g,e,t)

The functions Gl(x,e,t), Gz(x,e,t) and G3(xﬁ,t) are given by

(l-vz)L (fl-Px)
Gl(x;e,t) = Eh (a)

(1-vH)L (£,-Pg)
Gz(x,e,t) = T (b) (29)

(1-v3)L (£,-P,)

Using the dimensionless coordinates of eq. (9) and defining

X, = X/L, Y = Y/L (30)
the inertial forces fl’ f2 and f3 are

fl(E,e,T) = phLmz(iocosa + §ssina - %'cose - ;25) (a)

P .. ~ 2 .
fz(a,e,r) = pthz(Xosina - Y cosa + %— cosd - g&lsing (b) (31)

52

. . o .
f3(€,6,1) = phLmz(Xosina - chosa +'K— cosf - af)cosb (c)

The Px’ Pe, and Pz are components of the force distributed over
the surface of the shell. 1In this problem, we will consider the

gimbaled thrust the only distributed force. Thus

16



Px(x,e,t) =T, (1-Yeost)é(x + L) cosKa - pghcosa (a)
Pe(x,e,t) =-T_ (l-vcosQt)6(x + L) sinKa sin® - pghsina sind (b) (32)
Pz(x,e,t) =-T (1-YcosQt)é(x + L) sinKa cosp - pghsina cose (c¢)

where 8§(x + L) is the Dirac delta function. In terms of dimensionless

coordinates
Td _
Px(ﬁ,e,t) =1 (1-YcosQt)6(E+l) cosKa - pgh cosa (a)
T, _ ‘
Pe(E,e,T) = - T (1-vcosf1)6(E+1) sinka sin® - pgh sina sing ) (33)
To -
Pz(a,e,r) =-- (l-ycosQt)§(g+l) sinKa cosp - pgh sina cose (e)
where

el
Il
)
~
€

(34)

Now we can express G,(§,0,1), GZ(C,G,T) and G3(E,9,T) as

cosb - &25

>|e:

Gl(E,e,r) = (1-v2)ul:%o cosa + §6 sina -

T
- —2— (1-YcosRt)S(E+L) cosé5]+'(1-v2) E§£ cosa (a)

phsz2

' 02 .
G2(§993T) = (1-v2)u E;) sina - Y cosa + 2 cos - af

A
T

-9
ohL2w?

+ (1-YcosQr)s(g+1) sin§g]sine + (1-v2) Q%E sina sin® (35)

(b)

17



v °2
G3(E,9,T) = (1-v2)u I:Xo sina - Y cosa +-‘;—- cosb - af

T
+ 0 (1-YcosRT)8(E+l) sinKa| cos® + (1-v2) £glL sina cos6 (¢)
22 E
pgL™w
From eqs. (2a,b)
L1} To -
X, = 3 (l-ycosQt) cos (K+l)a - —EE (a)
20hL"w Lw
(36)
L1 T
Y = ———2-—2 (1-YcosQ1) sin (K+l)a (b)
°  20nL%w
Substitution of eqs. (36) into eqs. (35) and assuming small values of
a, yields
Gl(E,e,t) (1-y )u{ [32 - 6(£+1) (1-YcosQt) - i;- cos® - &26} 37)

.2
GZ(E,G,T) = (l-vz)u {To K{«S(Eﬂ)-% (1-YcosRT) + =— cosb- a&}sme (38)

] A

o2
G3(€,9,r) = (l-vz)u {:fo l«[&(iﬂ)-% (1-YcosQT) + )‘— cosf - aE}cose (39)

where

T = 5 (40)

18



VI. GALERKIN'S PROCEDURE FOR THE APPROXIMATE DETERMINATION OF THE
DISPLACEMENT COMPONENTS :

In the manner of Donnell (4), eqs. (10), (11), and (12) can be
rewritten in a more convenient form, that is, they can be rearranged
into one eighth-order, parial differential equation that w must
satisfy and two fourth-order, partial differential equations that
relate u to w and Vv to w, respectively. Then if we could determine
w it would enter into the determination of u and v as known nonhomo-
geneous terms. However, to solve the equation for w is a formidable
task. This equation is of eighth order in the spatial variables
and sixth order in time. It contains rather:complicated nonhomogeneous
terms. An accepted method of handling such complicated equations is
the Galerkin procedure (5). If we must resort to this method there is
little, if any, advantage to the Donnell separated scheme. We can
equally well treat eqs. (10), (11) and (12) by the Galerkin procedure

directly. This will be the course of action taken here.

For convenience we will rewrite eqs. (10), (11) and (12) here

2- 2- 2- - 2-
3°u (1-v) .2 3% , (1+H) Vv ow 2, 3°u
+ A + A VAT = (1-v)y —= + G, (£,6,1) (10)
1
2g 2 2 25 2 2 3£06 e o2
2- 2- 2- 2. 2
(1+v) 3°u | (1-v) 3°v 2939°v  ATdw _ 2, 9%
s A3Ese T T TAT TS - T3 = (1T =5 4+ 6,(£,8,1) (11)
9t a0 91
30 . .2 9% .2- 0% b= 2. 3%
VA + A = e A - =V = (1-v)uy — + G, (£,0,1) (12)
dE 30 1 2 3
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In accordance with the Galerkin procedure we chose approximating forms

for u, v, and w as

M N
ot (699’1‘) = z Z Umn(T) fmn(g’e) (41)
m=0 n=0
M N
vV (£,8,1) = Z Z an(r) gmn(E,e) (42)
m=0 n=0
M N
w(g0,0) = § [ W (v)h (£,0) (43)
m=0 N=0

where the functions f (£,8), g (£,6) and h. _(£,0) are known functions.
mn 'mn mn
It is the role of these functions to ensure satisfaction of the edge

conditions at £ = + 1.

The Galerkin procedure requires

1 2n
M N ) .
m£° nzo (1=v)y fmnfjk dgde Umn -
‘ ' -1 0
L2~ ,
? fon + (1-v2? ? fun £ dede)u
ag2 2 882 jk mn
-1
1 2
1 2“32 g ( " 3h
(1+v) A mn mn
- v A
2 J aza0  Tyk 989480 Vi TV f 3
=1 0 =1 0
1 27
= - - 8)
fjk dede W Gl(E,e,T) fjk(g,e, dede R (44)
=1 0

e
i

O’ 1’ L] . . M

k = 0’ 1’ L] . [ ] N

20




m=o n

2 2
(1-v) 2 Bnn 52 9 &nn

1 2r
‘ - f I g., dEde bV
‘ { IR 2 e o’ ik } mn

- f ! Gy(6s851) 8y, (£50) dedo (45)
=1 0
1=0,1, ...M

k=o, 1’ . L] L] N

N 1 2T af
mn
- 0
2m 3 1 27
-2 h, dEdO )V + (1-v2)uf h _h, dedgl W
I jk mn -1 mn  jk £do mn
0

' 2 '
2 o 4
A hmn + 2 hmn hjk dEde} wmn

1
= '-! J G3(€ 28 5T) hjk(€ »6) dz dé (46)

Q
[« 2]

<i

+
W
e =
OV N
k|

(=2

j= 0, 1’ L] L4 L] M

k=0,1, . . . N
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The system of ordinary differential equations represented by
eqs. (44), (45), and (46) govern the time behavior of the generalized
coordinates Umn’ an, and Wﬁn. In its most general form, that is, for
arbitrarily selected coordinate functions £ , 8’ and h , this

mn n mn

system has coupling in both the inertia and elastic terms. Not only
are the coordinates Umn coupled with the coordinates Ujk but also
to the coordinates an and Wﬁna It behooves us at this point to place
some restrictions on the coordinate functions that will simplify the
form of eqs. (44), (45), and (46). Requiring fmn’ 8un and hmn to
be orthogonal over the region of the shell will eliminate the inertia
coupling. Not only do we want the functions fmn’ - S and hmn to be
such as to simplify eqs. (44), (45), and (46) but they must also assure

the satisfaction of the edge conditions at £ = + 1.
One interesting set of edge conditions is

(i 1,8,1t) =0, Mg (i 1,6,1) =0,

1

(i 1,6,t) =0, Ng (i 1,65t) =0 (47)

<

This is the simply supported edge conditions with no axial load on
the ends of the shell. A choice of fmn(E.e), gmn(E,e) and hmn(E,e)

that assures the satisfaction of eqs. (47) is

fmn(ﬁ,e) = cos E% (€+1) cos nb (a)
gmn(g,e) = gin g% (g+1) sin né (48) ()
h_(£,6) = sin “‘—’2' (E+1) cos nd ()

22



Using the end conditions of eqs. (47) for this problem implies
that the center of mass always remains at the mid point of a line
that connects the centers of the end sections and that a line element
through the center of mass rotates as the line that connects the

centers of the end sections rotates.

Substitution of eqs. (48) into eqs. (44), (45), and (46) yields

1 2
w -1 "
U (1) = —— G,(£,6,t) dgds = 0 (49)
00 4n(l-v2)u .l J 1
kzlz ! .l 22m
Uok(r) + 2(1+\)) Uok(‘[) == _':_2__[ f Gl(C,G 91') cos ked{de
2 (1-v )u_l
§
=3 (50)

=1g290 e N

(T)+——-L—-u()+ ””" w, (1) =

j 4(1-v2)u Jo 2(1-v? Ju Je
1 2n _‘]_
—_— G, (£,0,7) cos 1= (£+1) dedo =
2n(1-v2)u_{ { ! 2
= = b a2
T° (1-Ycosfit) = 12"2 [} - (~1§:] a® = Pjo(r) (51)

3=1,2, « » « M
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) 2, 2,44
——351%—— U (1) + W (r) + 122 +2° ilr w0
2(1-v)u Jo ° 192(1-v)u Jo

-

l 2

-1 I j G,(5,8,1) sin 4% (£41) dzde =

2n(1-v2)u

A h| 22 _ ‘
T [(-1) -]a —Rjo(r) (52)

j=1,2,oo-M

12?4 2(1-v)A 22 __jkmh
j (T) + 1oy )u Ujk(T) - 4(1-v)n ij(T) +

n

2
VM oo = j G,(£,8,7) cos J% (£+1) cos kodEds = 0
0

2(1-v2)y Ik m(1- "2)“ -I

(53)
§=1,2, « « « M

k=1’2,qooN

o 2.2 2,2
—:MU (1) +V (T)+(1'V)j" + 8 k™A

4(1-v) ik ik 8(1-v2)y

A2

(1-v2)u

vjk(r) -

ij(T) =

1 2w . TOK j
f f G,(£,8,7) sin 13 (g+l) sin kedgde = le I 1 - (-1i]
w(l-v Ju 2

(1 - yecosRt)alr) - == {: + (l)i} aCr% Ir [} 1)j —1 &z(r)

= ij(r) ' (54)
j=1,2,0 . . M

k= 1’2’. . L] N
24



2
Ay ) - R
2(1-v¥y 3

(1-v2)u ij(r) + ij(r) +

12A2 + 0

2 (j2“2/4 + k2A2)2

-1
W, (1) =
12(1-v3)y jk

w(l-vz)u

[ N
Sy

G,(£,0,1) sin -1% (E+1) cos k8dEd® = Q

jk('r) (55)
j: 1’ 2’ LI T M
k=" 1, 2, . L) N

The initial condition for the sets of differential equations of
eqs. (49 thru 55) are given by:

[=¥]

M N
3]
(£,0,0) = Z z u . cos m2 (¢+1) cos ne,
m=0 n=o

wlo
L3 (=¥ ]

(£,0,0) =0

<t

M N o
(€,0,00= ] [ v sin=

m=0 n=0

(¢+1) sin ne,

OJlQJ
A<

(£,8,0)

i

0 (56)

€1

M N
(£,6,00= ) ] v, sin E% (g+1) cos né,
m=0 n=o0

Qo
(oA

(£,0,0) =

Before integrating eqs. (49) through (55) we need an expression for
a(t). We will restrict our attention to the initial conditions

a(0) = a  and «(0) =0

(57)
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then eqs. (27) and (28) yield

3
a(r) = z Ag cos Q.1 (58)
i=1
where
A1 = A2 C_2,
%o
A = (59)
2~ TR, %,
A3 74, G
and
BQ
Q =—
2 2w
= (2-8) 2 (60)
9 = (2-8) 35
f
2, (248) Em
Now we can integrate these equations. Equation (49) yields
UOO(T) = uoo -0 (61)

Eq. (50) yields

Sk 2 A “12
Uok(r) = u . oS w T + = abs 8 7, 2 (cos Q.1 - cos mokr)
m ok
k = 1’ 2’ L L] . N
. .2, S . (63)

ok ]/2(1+v)u

26
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(b)

(e)

(a)

(1)

(c¢)
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Eqs. (51) and (52) are a set of differential equations that govern
Ujo(t) and Wjo(T). We will use the Laplace transformation to integrate
this set of equations. The transform of a function will be indicated

by a bar over the function, i.e.,é(i[%(TE} = f. Transforming the

equations we obtain

2 I yvnr i g -3
e ull) Ujo + a12 wjo Pjo ts ujo
iy =3
a21 Uj + (s° + a22) wjo Rjo + s wjo
2 j
s* tay aj2 - T
— 1.2 1.2 2 2 42
j , j = |s "f‘(wjo/—l s +(wjo)
%21 s” Taj
P, (s 2 143 o R+ u, s(s +'aj ) w aj
5 - _lo %22 12 jo 10 712 6u9
i % oy ][ #f ey J
= 2 k| i 5 2 h R j
_ R (8" Fagy) mapy Py twy 808t tayy) - s uyo ey
W = (65)
Jo e + (ut )z:l l:sz + W2 )]
jo jo’ |
where
. 12,2 192 22 4 g2 g
1 4y Ju 22 192(1-v2)y
(66)
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The inverse of equation (64) is

u, (1) = f C 1) -0, . W cos wi T
jo i=1 (wio)Z jo 22 jo 12 “jo jo
{:j i .2 To'. { _ L cosﬁt - cos m?ot
T %22 ¢ (wjo) 1 [:cos “500 " E] F Y “0
W (mjo)

jo
3
h| i
(“12 [22 jo:l {ZW I:( 1yl - {]{mg_ ; Ao 5o
m#n
cos (Qm + Qn)T - cos miot cos (Qm - Qn)r - COSAE;OT
‘ 2 1,2 " 2 1,2
(Qm + Qn) - (wjo) (Qm - Qn) - (wjo)
l - cos w, T mi (cos 2 Q1 - cos wi T)
L oatel| e ) e
m=1 ©io a (wjo)

j= 1, 2, L] L] » M

i=1, 2
m = 1, 2, 3
n-= 1, 2’ 3
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The inverse of equation (65) is

2 i
= (1) h] 1.2 j {
w - - -
jo(T) izl (wi )2 . (w2 )2 <{Wjo Eu (wjo)] ), ujo} cos wjor

jo Jo
3
h| i
+{l}11 (wjo 12 jﬂ {ijﬂ [( 1) - 1:'{ f Z_ AmAnnmnn wjo
_ m=1 n
m#n
licos (Qm + Qn)'r - cos mio'r ) cos (Qm - Qn)r - cos wj’or]
¢ 2 i .2 . 2 i .2
(nm + nn) - (wjo) (nm - nn) - (wjo)
i m _ IR
3 2 2 1 - cos Wyt Yo (cos an‘r - cos m‘lot)
+ __Z_Am Qm i + 2 m 2
m=1 wjo 4 Q - (wjo)
3 To i " cqs-ﬁf - cos w;'o'r—
- a12 —il-'[cos wjo'r - ]]+ TOY wjo 52 “ 1 ) 2 (68)
wjo jo _
_1 - 1, 2’ M
i=1, 2
m=1, 2,

N
0




Transforming eqs.

2, ik kg jk
(8% +ay)) Ty +ay, Uy +ajy Wy
jk = 2 jk aJk 7 =
ay; Ujk + (8¢ + a; ) vj 833 jk =
jk ik 5 ik
1 Ot a3, Ty +(s? +alp) i
where
ik _ 1212 4 21w 0%’ Jk
21 " 2 * %
4(1-v )y
Jk — __VAjnm jk jk
137 Y12y 821~ %12
e =2k gk
2, 2
o Jk = 122”7 +0°(§ uﬁt'*'kk %
33 12(1-y )u

30

(53), (54), and (55) we

jk

find
= sujk
ij +svjk (69)
= ij + swjk
kA
4(1-v)u
k _ (1-v) 122 + ga %2
» 832 7 2 ’
8(1-v)u
Jk Jk
32 23 ’
(70)
3=1,2,...M
k=1, 2, « « . N



We define

_ 1.2 1,2 2 252 2 3,52
8 = [o% + @ip? ][s7+ @io? |57+ wipo?]

2 JK jk jk
s? 41 819 313
jk Jk jk
a1 * 852 333 (71)
ik ik 2, 3k
a3 33 S ‘+ 833

Using Cramer's rule to solve eqs. (69) we get

aJK 3k
SUik %12 213
o - ek
Ui = U T 5V o? +ady el
_ ik 2 . gk
Qp ¥ vy 23 s a3,
A(s)

- 2 ik Jey | Jk Kk
Usk —{s‘“jk Es +ay,) (s* +a a33) - a3, 23]
- Ik (2 4 gk gk K

Qe sV [312 s© +agg) - ajy ""23] *

N +swjk)[{‘2‘ g‘; - 21, jk):l}/A(s) (72)
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2 ik jk

s° tay) Uy 23
Ve = Sh Qe + 8vy H
aé? ij *osvyy o + agg
A(s)

e = /. a3 ik k
ik { "k (s* +a a33) - {3 aig] i

(ij + svjk) Esz +a ) (s + jk) - (a‘jk)2

ik K
s? a1 aiz Uik
i = jk Jk
ik 321 s +ay, U + 8V
Jk jk =
431 237 Qe * 8wy
A(s)

32
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ﬁjk = {.sujk {z %g - 2, jki] - (Q + sV, )

e e ]

E +ad) (2 +adk) - (J‘Sﬂ}/ (74)

Define

m~_1 [Who? - @7 | (75)

Using standard techniques, the inverse transform of equation (72) is

jky2
:] - (a23) }

3
U, (1) =
3k 1£1 D

o .J.IH
/\
I_A-
~
I—M
N I
N X
E?
G
N‘
L_l

k[ g 1.2 Jk 1k i
- wjk{aw I}zz - () a1, 8 23}> cos Wt

jk | 3k i .2] jk | 3k jk k jk
212 Eas - (wjk)_J 13[_ " (“’jk):l oy + 13>}

i
3 A w cos Q T-cos w T
. m_jk /5 REL A g 2 iy ik
(‘sm 21 i {ToK I:( b 1] 2,7 [ ]} @ 2 1,2
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+ &
1k

+

T Ky

0

3

cos (qn + Q)T - cos ot

cos (Qm + Qn)T - cos w}kr =

jk

i
3 A w
] m ik
E' "”JZ 7
m=1

Q - Q1 -
cos( - Q)T - cos w

-2 i .2
(Qm - )7 - (w,y)

cos (8 - Q )t - cos wi
m n

-2
(nm+n)

1
| %ok [0 - 1]{ g

- (w,,

1
ik

3 A

)

)2

m=1 n=1
m#£n

ik

2
@ +a)" -«

3
+ ]
m=1

A Q
m m

2

1,2 -
mjk)

i i
wjk(cos 2 er - cos wjkt)

+

2
(Qm - Qn) - (

wi
jk

)2

1 - cos mi

ik

T

2

4 Q 2 . (w
m

i |2
51

34
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wjk

2, .
2, 3
2,3

2, 3

(76)



The inverse transform of equation (73) is

_ 1 jk i .2 ik 1,2 k2
V(™ ) : <vjk {[au - (wjk>] [a33 - (‘*’jk>:| - (a3 }

i=1 Dy
jk jk aJk
wjk{ 11 - jk)] }
skl gk i 42 jk 3k i
- Uy {a |—33 - (w jk) jl aj, a 23}> cos Wi T

1 i i 2]l k[ k102
+ i { 1 jk :] I: (‘*’jk):l 223 [811 (wjk)]
jk
jk(jk Ik, ~/6 %i——-j— (TK[l)j 1] "»2[)34-1]
313 "33 \lk - - % 1

i oy i
cos T = COS ,.1 T. Ky 3 A «
o Tl IR DY [ . Wk |
NP, 1k § L2
m jk ' =
cos (Q -Q)t - cos wi t  cos (o -8) - cos ¢
ik N Q= © 41 T
2 2 =\2 i (2
(Q +0)° - (ka) (Qm -2)° - (wjk) |
1 , . i
3 A A Q n (i‘lk t‘.‘os(S?m + Qn)r cos w_]k'r
ok L& 1l -1 2 2 i .2
m }n;;l (Qm + Qn) - (wjk)
i 2
) cos (Qm - Qn)-r - cos “’jlkrj_*_ § A
2 1.2 & 2
(.Qm - ﬂn) - (wjk) m=1
i i i W
wjk( cos 2@ T - cos wjkr)+ 1 - cos Wy T ‘JL (77)
2 2 i
4 Q ° o (m ) - w
m jk jk Jok = 1,2,. o« « M,N

i,myn = 1)2’3
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The inverse transform of equation (74) is

3 —
_ 1 ik
o = 32l T
ik Lo 1k [P
=1 Dy
sk [ gk 7
ujk{ 13 [%22 (“’jk) _
ik
Vik 1223 11 -

PR j
(wjk) :l[az

Kk jk}
12 23

jk2
- W37 ] - Gl

jk):] jk jk}) cos m;'k‘t
|
| +——{ adk (mjk)]

i,2
. (wjk)J -

2k Ik
jk):l ajley; -

11 -
Jk
3 cosfl T - cos wi
h| 34 m ik
1kZ {TKB”'l:Imm[(l) :l} 0 2 -l
m jk
- i
TKY 3 Aw cos(n t9l)t - cos w,, T
[1 - (- 1)1:] m oL
Stk T @ 132 - @l )2
m jk
r -
cos( -Q)T-cosm 3 3AAQQw
+—n ISHEE DN =
@ -2 - )2 "2k 1 n=1 2
m Jk m#n
l:cos(Qm + Qn)r -~ cos m:jlkt ) cos (Q -9, )1 - cos w, kr_l
2 i 2 2
@ +a) '(“’jk) (@ -Q) -(wjk) B
. 3 AQO2 w;k(cos 20 - cos ikT) 1 - cos w kT 8
m£1 2 49 2. wl)?
m jk
Jok = 1,2, « . M,N
i,myn =1,2,3
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VII. Stability Considerations of the Dynamiec Solution

Inspection of the expressions for Ujk (1), ij (t) and ij (1)
indicated that the solution becomes unbounded for a large number of
possible values of the frequency of the applied thrust, £ . When Q
is such that any term in the denominator of the expressions for Ujk

(9, ij (1) and W,, (7T) vanishes the solution becomes unbounded and

jk

thus is unstable. For example, from eq. (b.,) we see if

“m ok (79)

that Uok (1) is unstable. We can express Qm in terms of ¢ as

B 2 Q
Q = l;(m-z) +s.m6} T s (80)
m=1,2,3
where
- % form=1
e = Y form=2 (81)
Y form=3

Equation (79) can now be written

Fm-z)2 + emejl 5= b (82)

— 1,2, eeoN-

-
!

m=1,2,3

recall that B is a function of @ as shown by eqs. (15), (21), and (22).
Eq. (82) is a transcendental relation that © must satisfy. When @ is

a root of eq. (82) Uok (t) becomes unbounded.
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Similarily, eqs. (67), (68), (76), (77), and (78) reveal that
instabilities exist when 2 is a root of any of the following

equations:

8 _ Wt (83)
W jo’
j:l’ 2, 'OOM
=1,2
(@22 - 2 + e -cr8l & = o (84)
-m- - Ane m n Juw - jo
9 2 2 e i
(m-2)" + (n-2)" + (Em + En)é_ il mjo (85)
‘ j=1’ 2,..~M
I i=1,2
m—]., 2,3
m+# n
n=1, 2, 3
!
|
2 Em-2)2 t+e B—_|2=mi (86)
m _|w jo
j=1,2, .. .M
i=1, 2
| m=1, 2, 3
P 2 Q 1
fm-Z) + Em%] = Wik (87)
2 2 1
(m-2)° -1 +‘emB 5~ Y3k (88)
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2 Q_ i
(m-2)° +1 +'emB o= wjk (89)
j = 1, 2, e o M
k=1, 2, «. « + N
i=1’ 2, 3
m=1, 2, 3
m-2)2 - (22?2 + (e - e g | 2oyt (90)
m n w jk
2 2 Q i
- -+ - - =
(m-2) (n-2)" + (e +¢€ )8 | g Yik (91)
j=1, 2, « « « M
k=1, 2, L] . » N
i= 19 2’ 3
m=1, 2, 3
m#n
n=1, 2, 3
2 | (-2 + ¢ g| 8= (92)
€m w Yk

j=1,2, « « . M
k= 1’ 2, L] L] L] N
i= 1’ 2’ 3

m=1, 2, 3

All of the above equations, with the exception of eq. (83), contain 8. Due
to the transcendental dependence of 8 on {!, the equations that contain B
will have to be solved by numerical iteration to determine the unstable values

of the thrust frequency, .
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VIII. INITIAL CONDITIONS OF THE DYNAMIC SOLUTION

The initial conditions defined by eqs. (56) are arbitrary;
however, one particular case of interest might be the static deflection
of the shell before the application or the accelerating thrust. The
shell is assumed to be inclined to the vertical at an angle ao and

supported by a distributed surface force applied at the lower end

as shown in Figure 2.

=8 +8, cos b
o 1




By static equilibrium we find SO and S1 as

S, = 2Lheg, §; = 4Lheg A sin o (93)

The equation of static equilibrium of a shell element is obtained

from eqs. (7) by disregarding the inertial terms as

2%y 4 (1-v) 2%u 4 (t+v) 2%y oy _dw_ (1-v?) P (x.8)
2 2 2 2r 9x90 r ox Eh x
ax 2r a6
() 2% (o) 2P, 1% 1aw__aoh oo
2r 9x38 2 2 2 .2 2 36 Eh g "
% r- 36 T
r ax  r238 ~ r? 12 Eh z !

For this problem the distributed surface forces are

—

Px(x,e) = - pgh + S(e)é(x+L)_ cos a s

Pe(x,e) = pgh + S(8)8(x+L) | sin @ sin 6

Pz(x,e) =[- pgh + S(8)8(x+L) | sin a  cos 6 (95)

Introducing into eqs. (94) and (95)

u = u/L, v=v/L, w=uw/L, £ =x/L

- _pgl 5z _% g .2

8= "> S50 = En’ 51 =& (96)
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and substituting eqs. (95) into (94) and assuming o small, we obtain

2- 2- 2- -
3°u , (l-v) 2 3% , (1) 3°v w 2.1 - -
+ + - — = - -

P > A 2 2 320 VA 3t (1-v7) | g (S°+ Slcose)6(€+1)
£} 39
A+ 224 4 (-v) 2% 452 azG‘a 223w _

2 9£06 2 2 2

£ 3 50 26
ao(l-vz) [E - (§o+ §1COSG)6(E+15| sin © (97)

2

8y +‘A2 v | Azﬁ - 54= =a [é - (§°+'§1 cos 8)6(5+1€] cos 0

VA 5F 50 12

The edge conditions of the static deflection problem are the same

as given in eqs. (47) for the dynamic problem

w(+1,0)=0 Mo (£ 1,0) =0,

<t

(+1,0) = 0, Ng (+ 1,8) = 0,

To satisfy these edge conditions we assume

M N
u(g,0)= § 7 u o cos E% (£+1) cos nb (a)
m=0 n=0
M N o
v (£,8) = 21 Zl v, sin = (¢+1) sin ng (b)
m=1l n=
- M N o
w(g,0) = J w o sin = (¢+1) cos nd (98) (c)
m=1 n=o
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Substituting the approximations of eqs. (98) into the equilibrium

eqs, (97) and applying Galerkin's procedure we obtain

thus u is completely arbitrary.

00
_ (tv) .
Yok T2 U %1k k =
2V 4 2. =
+ YA = -2 (1. =
Yo jn  "jo  jm (1-v%) S0 3
(on? + o44% % _ _
u, + w, =0, j=
jo 96 vXjm jo

L}znz 2(1=y ) A2k€] jk = (1+tv))jkn vjk +

20 =
4(1-v°) S1 le

2.2
2.2
- (RN gk ug [E1=v) 1—%— + 4k A—] Vi

& & o (1)) 1-=<1>3:}

T
2927y - % Vot o’ + %; (13%3 +
J—f,é <1~v2>[1 . (4)5:] 51
§ =
Kk =

- 6%k

w

jk

(99)

(100)

(101)

(102)

(103)

(104)

(105)



Solving eqs. (101) and (102) for Uy and Vi, Ve get

4v(1-v2) (192)\2 +'02j4n4)

- § (106)
jo g E2j4ﬂ4 - 19210207 °
384 (1-v2)vA g
LT 3 3 S, (107)
jo 4 o 19Ac(1v9)
j = lg 2, o * . M
Defining
jzwz + 2A2(1-v)k2 =jkma(1+y) 2jmVA
12"2 2,2 2
Ajk = | =jkmr (1+y) 2 (1-v)+ 4rx“k =41k
- 27,22 2
2§vA -k [“2 + 913 (JZ“— + Azkz) ]

=1, 2, + o« - M
3 s 2, (108)
k= 1’ 29 e o+ o N

and using Cramer's rule to solve eqs. (103), (104) and (105) we obtain




2 2.2 2 A L

ik A3k T3 |
4, 2 - 3 2 o’ .22 22.2]

- 16Xk} - 2 ga_ 1 - (-1 Ak(IHy) | &4 +Z§(j1r + 437k

-8 kv + 823 (1-w) K2 - 232020 (1-\;)}) (109)

2 2
_ 4(1=v7) = . 2 .0 2.2 2.2.2
vjk = Tk 61k< s1 {Jknk (1+v) [ 477 + 78 (§°n° + 4k ):]

- 8ikmun> -%% a [1 - (-1)3] [E2n2'+ 2k2)? (1-\,5[ 422

2
+ {g (j21T2 + Akzxz)ﬂ - 4j21r2v2)\2 + 8)\2k l:-]zwz + k22 (1-\)3
- ajzszxz (1+v)} (110)

2 2.2
4(1- - i \
Wi = _——-——(Aj;i ) 8 11 ( 51{4)\3 k2 (1+v) - 23muA ’; (1-v) + 4-’\2k2]

2§0. " , — -]
-5 [1 - (-1){'- {Akzk ’ 3202+ %2 (l-v—)l- 25 2kn 20 %0 (1)

\

+ [jzvz (1-v) + mzkz] [jzﬂz + 2% (1-v) kz]-ijkznz)\z (1+v)2}) (111)

This completes the analysis of the problem.

45




IX. CONCLUSIONS

This work represents an initial step in analyzing the dynamic
structural behavior of a large rocket booster during powered flight.
As such, the model accepted retained the features that the thrust was

time varying and gimbaled for directional control.

The use of Galerkin's procedure rendered the shell equations

of motion tractable. The advantages of this analysis are:

1. A complete solution was obtained for possible response studies.
2. Criteria for unstable frequencies of the time varying thrust

were readily evident because of the form of the solution.

3. All the natural frequencies of the free vibration of a

simply supported circular cylindrical shell were obtained.
The restrictions of the analysis are:

1. The use of Galerkin's procedure to satisfy the equations of
motion is scme weighted average manner.

2. Requiring that the center of mass always remains at the mid-
point of a line that connects the centers of the end sections

so that the edge conditions of eqs. (47) are applicable.
Future work on this problem will be to:

1. Generalize the model by using two circular cylinders joined
by a rigid connector to simulate a large booster.

2. Allow different end conditicns so as to remove the second re-

striction listed above.
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